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the twist is in a group G̃ and examine the conditions for consistency. We find that if the

duality twist is introduced through a group element g̃ in G̃, then the flat G̃-connection

A = g̃−1dg̃ must have constant components Mn with respect to the basis 1-forms on G, so

that the dependence on the internal coordinates cancels out in the lower dimensional theory.

This condition can be satisfied if and only if Mn forms a representation of the Lie algebra

of G, which then ensures that the lower dimensional gauge algebra closes. We find the form

of this gauge algebra and compare it to that arising from flux compactifications on twisted

tori. As an example of our construction, we find a new five dimensional gauged, massive

supergravity theory by dimensionally reducing the eight dimensional Type II supergravity

on a three dimensional unimodular, non-semi-simple, non-abelian group manifold with an

SL(3, IR) twist.
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1. Introduction

In the toroidal dimensional reduction of a theory invariant under a global symmetry group

G, it is possible to introduce a generalized ansatz for the reduction of the fields transforming

in a non-trivial representation of G. The ansatz which was fist introduced by Scherk and

Schwarz in [1] is

φ̂(xµ, ym) = g(ym)φ(xµ) (1.1)

where φ̂ is a generic field transforming under G as φ̂ → gφ̂ and ym,m = 1, . . . , d are

coordinates on T d so that g : T d → G. The ansatz (1.1) is equivalent to an expansion

of the fields in terms of the harmonics of T d followed by a consistent truncation to the

zero modes with a twisted boundary condition for φ̂ (as opposed to the periodic boundary

conditions imposed by the standard Kaluza-Klein ansatz). As φ̂ traverses a cycle of T d

parameterized by 0 ≤ τi ≤ 2πRi, i = 1, . . . , d it picks up a monodromy Ωi(g) so that the

twisted boundary condition is

φ̂(xµ, τi = 2πRi) = Ωi φ̂(xµ, τi = 0). (1.2)

The monodromies introduce in lower dimensions a non-abelian gauge algebra, mass param-

eters and a scalar potential. The G-invariance of the higher dimensional theory ensures

that the y-dependence cancels out in the lower dimensional action and the reduction is

consistent in the sense that the solutions to the lower dimensional field equations can be
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uplifted to become solutions of the higher dimensional ones. In the recent literature, such

dimensional reductions are usually called reductions with duality twists [2].

Later in [3], Scherk and Schwarz introduced a related scheme of generalized dimen-

sional reduction, where now the global symmetry exploited is ‘internal’ as opposed to the

‘external’ symmetries of [1]. In the terminology of [1] and [3], the internal symmetries are

the geometric symmetries associated with the internal manifold, while the external symme-

tries act on the spinor and p-form fields. The scheme introduced in [3] can be described as

the dimensional reduction on a d-dimensional parallelizable manifold X with well-defined

nowhere vanishing basis one-forms

ηm = Um
n(y)dyn, (1.3)

where ym are coordinates on X and Um
n(y) is a matrix element of the internal symmetry

group G. The one-forms ηm satisfy

dηm +
1

2
Cm

npη
n ∧ ηp = 0 (1.4)

with coefficients

Cm
np = −2(U−1)rn(U−1)sp∂[rU

m
s]. (1.5)

Consistency requires Cm
np to be constant, which in turn implies that they are the structure

constants of the Lie algebra of G. Then locally the internal space X has the structure of

the group manifold of G. Globally X = G/Γ where Γ is a discrete subgroup of G [4] and

hence its structure can be quite different from the group manifold. It is common in the

literature to refer to such reductions as Scherk-Schwarz reductions and the internal space

X as the twisted torus. In this paper, we are mainly interested in the local structure, so

for our purposes here a twisted torus is a group manifold, where the group can be and in

general is non-compact. Like with the reductions with duality twists, reductions on twisted

tori too introduce in lower dimensions a non-abelian gauge algebra, mass parameters and

a scalar potential.

As was already mentioned in [1] and [3], in some cases dimensional reduction on a

twisted torus can be equivalent to a standard Kaluza-Klein reduction followed by a dimen-

sional reduction with a duality twist. Indeed, after a Kaluza-Klein reduction, the internal

symmetries associated with the geometry of the internal manifold are promoted to the

external symmetries of the lower dimensional theory, which then can be exploited in a

subsequent reduction with a duality twist. For example, consider a theory compactified

on a two torus T 2. The lower dimensional theory has an SL(2, IR) symmetry as part of

its global symmetry group, as SL(2, IR) is the large diffeomorphism group of T 2. In the

spectrum of the theory there exists two scalar fields, τ1 and τ2, which correspond to the

moduli parameterizing the shape of the internal T 2, transforming under SL(2, IR) through

fractional linear transformations. Now, in a further compactification on a circle S1 we can

introduce a duality-twisted ansatz for these fields as in (1.1), where g(y) is in SL(2, IR).

From the point of view of the parent theory, this is nothing but a compactification on a

three dimensional twisted torus with the metric

ds2 = (2πR)2dy2 +
A

τ2(y)
| τ(y)dx1 + dx2 |2, (1.6)
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from which we can check that the basis 1-forms ηm satisfy (1.4).1 Here y parameterizes

the S1, R is the radius of S1, A is the area of T 2 and τ = τ1 + iτ2. We will discuss this in

more detail in section four.

The purpose of this paper is to consider twisted dimensional reductions on a group

manifold G, where the twist is in a duality group G̃ and examine the conditions for which

the ansatz (1.1) yields a consistent dimensional reduction. We find that the Lie algebra (of

G̃) valued one-form A = g̃−1dg̃ = Am(y)ηm (with g̃ ∈ G̃) should have constant components

An(y) = Mn so that the y-dependence cancels out in the lower dimensional action and the

field equations. As soon as we impose the condition that Mn must be constant elements

of the Lie algebra of G̃, not depending on the coordinates ym of G, we see that Mn must

also satisfy the following commutation relations

[Mn,Mp] = Cq
npMq. (1.7)

This follows from the fact that the 1-form A, being of the form A = g̃−1dg̃ satisfies the

zero curvature condition

dA + A ∧ A = 0. (1.8)

We also find, the condition (1.7) ensures the closure of the lower dimensional gauge algebra

arising from the G̃-twisted reduction on G. At this point, an important question arises as

to whether A is pure gauge globally or only locally. If g̃ is single-valued on G so that A is

pure gauge globally, then A can be gauge transformed to a zero connection, rendering our

dimensional reduction equivalent to a standard group manifold reduction on G, with no G̃

twist at all. However, if G is not simply connected with π1(G) 6= 0, then one can introduce

non-trivial monodromies for the connection A over the cycles of G, which then introduces

twisted boundary conditions for the fields charged under the duality group G̃. In this case,

Mn introduces as usual the mass terms and the gauge parameters in the lower dimensional

theory.

The plan of the paper is as follows. In the next section we briefly review the standard

dimensional reduction on a group manifold. In section 3 we study the twisted dimensional

reduction on a group manifold G of a particular G̃-invariant theory of gravity coupled to

scalars and p-form fields. We find the consistency conditions for the cancellation of the

y-dependence and the closure of the lower dimensional gauge algebra. In section 4 we turn

to our main interest: unimodular, non-semi-simple group manifolds of dimension three. We

review in this section that all such manifolds are locally isomorphic to a twisted torus with

the metric (1.6), where τ(y) is given by (1.1) with g(y) in a certain conjugacy class of SL(2).

In section 5, we consider the low energy effective field theory of eight dimensional type II

string theory. In this dimension, the U-duality group is SL(2) × SL(3). Dimensionally

reducing on a three dimensional unimodular, non-semi-simple group manifold G with an

SL(3) twist, we obtain in five dimensions a new gauged supergravity with mass terms and

a scalar potential. We conclude with discussions in section 6.

1Duality-twisted reductions are classified with respect to the conjugacy classes of the duality group. In

each conjugacy class of SL(2, IR) a representative can be chosen such that Cm
np in (1.4) are constants. See

section 4.
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2. Dimensional reduction on a group manifold

The metric ansatz which leads to a consistent dimensional reduction from D + d to D

dimensions on a d-dimensional group manifold G is the following

d̂s
2

= e2αφds2 + e2βφMmn(ηm + Am
µ dxµ)(ηn + An

µdxµ). (2.1)

Here ym are the coordinates on the group manifold, which consists of the group elements

g(ym) = g ∈ G. That is, we have a group element of G corresponding to each point on the

group manifold. The ηm(y) = ηm
n(y)dyn with ηm

n(y) ∈ G are the basis 1-forms on G, ds2 is

the metric on the D dimensional space-time, φ is the dilaton and the vectors An = An
µdxµ

are the d graviphotons. M is a scalar matrix parameterizing the coset SL(d, IR)/SO(d)

corresponding to d− 1 dilatons and d(d− 1)/2 axions. It is convenient to set the values of

α and β to

α2 =
d

2(D + d − 2)(D − 2)
, β = −(D − 2)α

d
(2.2)

so that the lower dimensional Einstein-Hilbert action has the conventional form. The

internal part of (2.1) corresponds to the left invariant metric of a group manifold

ds2
G = e2βφMmnηmηn. (2.3)

In order for the lower dimensional theory to be independent of the internal coordinates,

the internal dependence of ηm(y) = ηm
n(y)dyn should be chosen such that

tmηm
ndyn = g−1dg (2.4)

for group elements g = g(ym), where tm forms a basis for the Lie algebra of G. As a

result, ηm are the left invariant Maurer-Cartan forms of a group manifold G, satisfying

the condition (1.4) with constant structure constants Cm
np. The metric ansatz (2.1) yields

a consistent reduction of the D + d dimensional Einstein-Hilbert action to D dimensions,

provided that the group G is unimodular.2 If G is not unimodular, then there is a consistent

reduction at level of field equations only [5, 6].

From the dimensional reduction of the D + d dimensional Einstein-Hilbert action on a

d dimensional unimodular group G, one obtains the following Lagrangian in D dimensions

LEH = R ∗ 1 +
1

4
Tr(DM∧∗DM−1) − 1

2
dφ ∧ ∗dφ − 1

4
e2(α−β)φFmMmn ∧ ∗Fn − V. (2.5)

Here

Fm = dAm − 1

2
Cm

npAn ∧ Ap, (2.6)

DMmn = dMmn + 2Cp
q(m

AqMn)p (2.7)

2This means that the adjoint representation of the group has unit determinant. At the level of the

Lie algebra, this implies that the structure constants are traceless, i.e, Cm
mn = 0. Equivalently, any left-

invariant measure on G is also right-invariant, so all top-dimensional forms on G are proportional up to

a factor which does not depend on the coordinates on G. All compact groups and semi-simple groups

(compact or not) are necessarily unimodular [5].
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and the scalar potential V is

V =
1

4
e−2(α−β)φ[2MnqCp

mnCm
pq + MmqMnrMpsC

p
mnCs

qr]. (2.8)

If the D + d dimensional theory also includes p-form fields B(p), the corresponding

ansatz for their reduction is

B̂(p) = B(p) + B(p−1)m ∧ hm + · · · + 1

(p − k)!
B(k)m1···mp−k

∧ hm1 ∧ · · · ∧ hmp−k . (2.9)

Here hm = ηm + Am and k is the larger of zero and p − d. The hatted fields on the left

hand side are D + d dimensional, whereas the unhatted fields B(q) on the right hand side

are D dimensional and do not depend on the d internal coordinates for the consistency of

the ansatz. For more details on group manifold reductions, see for example [5, 6].

3. Twisted reductions on a group manifold

In the toroidal reduction of a G̃-invariant theory with a duality twist with an ansatz of the

form (1.1), an important consistency criterium is that g̃(y)−1dg̃(y) should be a constant

1-form. This condition ensures that the dependence on the internal coordinates cancels

out in the lower dimensional action and field equations. When the internal space is a

circle an obvious consistent choice is g̃(y) = eMy, with M in the Lie algebra of G̃. For the

generalization to a d dimensional torus T d the appropriate choice is

g̃(y1, . . . , yn) = eM1y1+···+Mdyd

, (3.1)

where ym are coordinates on T d. The matrices Mn in (3.1) are required to commute, so

that the y dependence cancels out and the gauge algebra closes in the lower dimensional

theory. In this section we examine the case in which the internal space is a group manifold

G. For this purpose, we study a particular type of Lagrangian for simplicity. Namely, we

consider the group manifold reduction of a theory of gravity coupled to scalars in the coset

G̃/H (where H is the maximally compact subgroup of G̃) and a set of r n− 1 form gauge

potentials B̂a
(p) with n-form field strengths Ĥa

(p+1) = dB̂a
(p), a = 1, . . . , r, transforming in

a real r-dimensional representation of the symmetry group G̃. This example will play a

central role in the coming sections. The Lagrangian we will study is

L = R∗̂1 +
1

4
tr(dK̂ ∧ ∗̂dK̂−1) − 1

2
Ĥt

(p+1)K̂−1 ∧ ∗̂Ĥ(p+1). (3.2)

Here K̂ is an r × r matrix of scalar fields which act as a metric on the coset space G̃/H.

The Lagrangian (3.2) is invariant under the rigid G̃ symmetry

B̂(p) → LB̂(p), K̂ → LK̂Lt (3.3)

where La
b is a G̃-transformation in the r representation, and the space-time metric is

invariant. The invariance of the metric means that the ansatz for the dimensional reduction

of the metric is the same as the standard ansatz for the group manifold reduction, which
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we presented in (2.1). On the other hand, the ansatz for the reduction of the scalar and

the p-form fields are dictated by their transformation (3.3) under G̃, so that we have

K̂(x, y) = g̃(y)K(x)g̃t(y), (3.4)

B̂(p)(x, y) = g̃(y)B̂(p)(x), (3.5)

where B̂(p)(x) on the right hand side of (3.5) is as in (2.9) and g̃(y) ∈ G̃. Note that ym

here are coordinates on G, now that our internal space is the group manifold G. In other

words, g̃ is a map from the group manifold to the duality group G̃: g̃ : G → G̃. In the next

subsection, we will see that imposing the condition for g̃−1dg̃ to be a constant 1-form is

necessary and also sufficient in order for the dependence on the internal coordinates ym to

cancel out in the D dimensional Lagrangian. Then in the following subsection, we will see

that a new condition has to be imposed for the lower dimensional gauge algebra to close.

3.1 Action

In this section we impose the condition that g̃−1dg̃ has constant components with respect

to the Maurer-Cartan forms of the group manifold G, so that it can be written as

g̃−1dg̃ = Mnηn, (3.6)

where Mn are constant elements of the Lie algebra of G̃.

The ansatz (3.5) for the reduction of the p-form fields B̂(p) implies for the field strength

Ĥ(p+1)

Ĥ(p+1)(x
µ, y) = dB̂(p)(x

µ, y) = dg̃(y)B̂(p)(x
µ) + g̃(y)dB̂(p)(x

µ)

= g̃(y)[dB̂(p)(x
µ) + g̃−1dg̃(y)B̂(p)(x

µ)] (3.7)

When we insert (3.7) and (3.4) in the kinetic term for the p-form fields in (3.2), we see that

it is independent of y as the overall g̃(y) factor cancels out due to the global G̃ invariance

of the action, and g̃−1dg̃ is independent of y by (3.6). Now we check the kinetic term for

the scalar fields

Ls =
1

4
tr(dK̂ ∧ ∗̂dK̂−1). (3.8)

From the Scherk-Schwarz ansatz (3.4) for the scalar fields we see

dK̂ = dg̃Kg̃t + g̃dKg̃t + g̃Kdg̃t = g̃(MpKηp + dK + KM t
pη

p)g̃t. (3.9)

Similarly,

dK̂−1 = (g̃t)−1(−M t
pK−1ηp + dK−1 −K−1Mpη

p)g̃−1, (3.10)

where we have used d(g̃−1)g̃ = −g̃−1dg̃ = −Mnηn. The overall g̃ factors cancel out in

the action due to invariance of the Lagrangian under (3.3). As the mass matrices Mn are

constant, we conclude that the kinetic term for the scalar fields is also independent of the

internal coordinates.
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3.2 Gauge algebra

In this section we choose p = 2 for simplicity. This is also the most interesting case for

us, as we will see in section 5. In the dimensional reduction of a G̃-invariant theory of the

form (3.2), one obtains three sets of gauge fields in the reduced theory. These are the fields

Ba
(2) and Ba

(1)m coming from the reduction of the 2-form fields Ba
(2) and the vector fields

Am coming from the reduction of the metric. Here m runs from 1 to d, where d is the

dimension of the internal twisted torus. We denote the generators of the corresponding

gauge transformations and the gauge parameters {Y a,Xma, Zm} and {Λa
(1),Λ

a
(0)m, ωm},

respectively. For a reduction on a twisted torus, the gauge transformation for the vector

fields are always of the form [3]

δAm = dωm + Cm
npω

nAp. (3.11)

Note that this implies that the hm = ηm + Am always transform covariantly

δhm = Cm
npω

nhp, (3.12)

as we have iZηm = −ωm and

δηm = diZηm + iZdηm = −dωm + Cm
npω

nηp. (3.13)

Before proceeding to compute the gauge transformations, let us first write down the field

strengths for gauge fields in lower dimensions. From the ansatz for the 2-form field B2

B̂(2)(x
µ, yn) = g̃(yn)[B(2)(x

µ) + B(1)m(xµ) ∧ hm +
1

2!
B(0)mn(xµ)hm ∧ hn], (3.14)

we find for the field strength Ĥ(3) = dB̂(2)

Ĥ(3)(x
µ, yn) = g̃(yn)[H(3)(x

µ) + H(2)n(xµ) ∧ hn (3.15)

+
1

2!
H(1)np(x

µ) ∧ hn ∧ hp +
1

3!
H(0)mnp(x

µ)hm ∧ hn ∧ hp],

where

H(3) = dB(2) − B(1)m ∧ Fm − MnB(2) ∧ An

H(2)n = dB(1)n + B(1)mCm
npAp + B(0)mn ∧ Fm + MnB(2) + MpB(1)nAp

H(1)np = dB(0)np + B(1)mCm
np + B(0)m[nCm

p]rAr − M[nB(1)p] − MrB(0)npAr

H(0)npr = M[nB(0)pr] + Cm
[npB(0)r]m (3.16)

Here

Fm = dAm − 1

2
Cm

npAn ∧Ap, (3.17)

and we have used

dhm = dηm + dAm = Fm + Cm
npAn ∧ hp − 1

2
Cm

nph
n ∧ hp. (3.18)
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Note that Fm varies covariantly

δFm = Cm
npω

nFp. (3.19)

The terms in (3.16) involving the structure constants Cm
np are due to the twisted internal

geometry, whereas the terms involving the mass matrices Mp are due to the twisted ansatz

for the 2-form field B(2).

Next we find the gauge transformations of the 2-form, 1-form and the scalar fields

coming from the reduction of B̂(2) inherited from its diffeomorphism invariance and the

gauge transformation δB̂(2) = dΛ̂(1)(x
µ, y). Let us start with the latter. As we are using a

generalized ansatz (3.14) for the reduction of B̂(2), the ansatz for the higher dimensional

gauge parameter Λ̂(1)(x
µ, ym) should be

Λ̂(1)(x
µ, ym) = g̃(ym)[Λ(1)(x

µ) + Λ(0)m(xµ) ∧ hm]. (3.20)

From (3.20) we find

dΛ̂(1) = g̃(y)[dΛ(1) + Λ(0)m ∧ Fm + MpΛ(1)Ap

+(dΛ(0)m + Λ(0)nCn
pmAp − MmΛ(1) − MpΛ(0)mAp) ∧ hm

+
1

2!
(−Λ(0)pC

p
mn + M[mΛ(0)n])h

m ∧ hn] (3.21)

Comparing this to δB̂(2) with the ansatz (3.14) we find

δB(2) = dΛ(1) + MpΛ(1)Ap + Λ(0)mFm (3.22)

δB(1)m = dΛ(0)m − Λ(0)nCn
mpAp − MmΛ(1) − MpΛ(0)mAp

δB(0)mn = −Λ(0)pC
p

mn + M[mΛ(0)n]

Now we find the gauge transformations inherited from the diffeomorphism invariance of

B̂(2).

δZB̂(2) = LZB̂(2) = 0 = LZ [g̃(y)(B(2) + B(1)m ∧ hm +
1

2!
B(0)mnhm ∧ hn)]

= (LZ g̃(y))(B(2) + B(1)m ∧ hm +
1

2!
B(0)mnhm ∧ hn)

+g̃(y)LZ(B(2) + B(1)m ∧ hm +
1

2!
B(0)mnhm ∧ hn). (3.23)

Noting

LZ g̃(y) = iZdg̃(y) + diZ g̃(y) = iZdg̃(y) = g̃iZ g̃−1dg̃(y) = −g̃Mpω
p,

and taking into account (3.12) we obtain

δZB(2) = Mpω
pB(2) (3.24)

δZB(1)m = Mpω
pB(1)m − B(1)pC

p
nmωn

δZB(0)mn = Mpω
pB(0)mn + B(0)p[nCp

m]qω
q
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One can check that the field strengths (3.16) are indeed invariant under the gauge trans-

formations (3.22) and transform covariantly under (3.24).

Now we have to check that the gauge algebra closes. At this point, we find that we

need to impose a new condition in addition to the constancy of the mass matrices Mn.

Namely, Mn has to satisfy the following commutation relations

[Mn,Mp] = Cq
npMq. (3.25)

This means that Mn, which are elements of the Lie algebra of G̃ should form a representa-

tion of the Lie algebra of G. Obviously, this is possible only if G is a subgroup of G̃. Note

that we should have anticipated the condition (3.25) already in the previous subsection,

when we imposed that the mass matrices Mn in (3.6) do not depend on the coordinates ym

of G. To see why, we should first note that the 1-form A ≡ g̃−1dg̃ automatically satisfies

the zero curvature condition

dA + A ∧ A = 0. (3.26)

On the other hand, the basis 1-forms ηm satisfy the Maurer-Cartan equation (1.4). These

two equations are compatible with constant Mp if and only if the commutation rela-

tion (3.25) is satisfied. Therefore, our analysis of the gauge algebra shows that it is consis-

tent to require A to be a constant, flat G̃-connection on G. At this point, we see that the

topology of G plays an important role in analyzing as to whether it is possible to introduce

non-trivial duality twists on the group manifold G. More precisely, we see that if π1(G) = 0

so that the group manifold is simply-connected, then the flat connection A is pure gauge

globally, giving a dimensional reduction equivalent to a standard group manifold reduction

with no duality twist. This follows from the fact that the moduli space of flat G̃-connections

on G (modulo smooth gauge transformations) can be identified with Hom(π1(G), G̃)/G̃,

where G̃ acts by conjugation. Therefore, it is crucial that G is non-simply-connected so

that the non-trivial Wilson lines/holonomies of the connection A over the cycles of G intro-

duce twisted boundary conditions for the fields charged under G̃ (with analogy to a twisted

reduction on T d in which case we have the twisted boundary conditions (1.2)). So far our

analysis has been only local and we will not be studying the global issues in the rest of the

paper, either. However, we will have a bit more to say on the non-simply-connectedness

condition on the internal space, when we restrict ourselves to particular examples in the

next section.

When the condition (3.25) is satisfied, the gauge algebra has the following form3

[Zn,Xm] = Cm
nqX

q − MnXm (3.27)

[Zp, Y
a] = −Ma

p bY
b (3.28)

[Zp, Zq] = −Cr
pqZr. (3.29)

Note that this algebra is different from the one that is obtained from the reduction on a

twisted torus with constant flux for the 2-form field Ba
(2). In this case, it was shown in [7, 4]

3In finding the gauge algebra, we also have to use the condition Cm
[npC

q

r]m = 0, which follows immedi-

ately from the integrability of (1.4).
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that the gauge transformations coming from the higher dimensional gauge invariance of the

2-form field is still of the form (3.22), where now all the terms with the mass matrices Mp

are zero. On the other hand the gauge transformations coming from the diffeomorphism

invariance of B(2) is of the form

δZB(2) =
1

2
Kmnpω

pAm ∧ An (3.30)

δZB(1)m = Kmnpω
pAn − B(1)pC

p
nmωn

δZB(0)mn = Kmnpω
p + B(0)p[nCp

m]qω
q,

where
1

3!
Kmnpη

m ∧ ηn ∧ ηp

with constant Kmnp being the 3-form flux introduced for the 2-form field B(2). We see

that (3.30) is equivalent to (3.24) only for special values of the gauge fields, namely when

MpB(2) =
1

2
KpmnAm ∧ An

M[pB(1)m] = −KpmnAn

M[pB(0)mn] = −Kpmn (3.31)

As a final remark, note that a gauge algebra of the form (3.27), (3.28), (3.29) was

obtained in [8], albeit in a completely different context. There they consider the compacti-

fications of the heterotic string, the generators Y a are associated with the gauge invariance

of the 16 vector fields in the Yang-Mills sector that already exist in 10 dimensions and Mp

correspond to the internal fluxes in the Yang-Mills sector.

4. Three dimensional group manifolds and twisted tori

In this section we restrict ourselves to three dimensional group manifolds. The classification

of three dimensional algebras was made long ago by Bianchi. As reviewed by [6] there are

eleven inequivalent three dimensional algebras, two of which are one-parameter families.

Among them, five are of Type B, meaning that they are not unimodular algebras. The six

unimodular algebras of Type A include the two semi-simple algebras so(2, 1) and so(3). We

are interested here in the three non-abelian unimodular non-semisimple algebras: heis3,

iso(1, 1) and iso(2). The fourth unimodular, non-semi-simple algebra, which is the only

abelian three dimensional algebra, u(1)3 has the group manifold T 3 (after some discrete

identifications, which we are not interested here as we study only the local structure), so

the corresponding group manifold reduction is a standard Kaluza-Klein reduction on a

three dimensional torus. As we mentioned before, we require unimodularity so that there

is a consistent dimensional reduction at the level of the action. On the other hand, non-

semi-simplicity is required because then the corresponding group manifold has the local

structure of a T 2 fibration over S1 [9],[4], making it easier to analyze the twisted torus

geometry. We will now study this structure, following closely the discussion in [4].

– 10 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
2

Consider a reduction on T 2 with metric

ds2
2 =

A

τ2
| τdx1 + dx2 |2 (4.1)

where τ = τ1 + iτ2 is the complex structure modulus and A is the area of T 2. The

metric (4.1) can also be written as

ds2
2 = H(τ)abdxadxb = dxtH(τ)dx, (4.2)

with

H(τ) =
A

τ2

(

| τ |2 τ1

τ1 1

)

. (4.3)

The symmetry group associated with the large diffeomorphisms of T 2 is GL(2, IR), with

the volume preserving subgroup SL(2, IR). The action of SL(2, IR) on the metric is

H → LHLt, x → (Lt)−1x (4.4)

with L ∈ SL(2, IR). This defines the transformation of the moduli through

H(τ ′) = LH(τ)Lt. (4.5)

If

L =

(

a b

c d

)

∈ SL(2, IR)

then (4.5) is equivalent to

τ1 −→ ac(τ2
1 + τ2

2 ) + (ad + bc)τ1 + bd

c2(τ2
1 + τ2

2 ) + 2dcτ1 + d2
,

τ2 −→ τ2

c2(τ2
1 + τ2

2 ) + 2dcτ1 + d2
. (4.6)

The transformation (4.6) of the moduli can be written in the compact form

τ → aτ + b

cτ + d
≡ L[τ ], (4.7)

which of course is nothing but the fractional linear transformation of the complex structure

modulus of T 2 under the action of SL(2, IR).

After the dimensional reduction on T 2 the geometric internal symmetry SL(2, IR) of

T 2 is promoted to become an external symmetry of the lower dimensional theory, which we

can use to perform a further reduction on a circle with duality twist. One can introduce a

twisted ansatz for the two massless scalar fields corresponding to the moduli τi through

H(τ(y)) = s(y)H(τ0)s
t(y) (4.8)

with s(y) a y dependent SL(2, IR) element and τ0 is a constant value of the modulus. Here y

parameterizes the circle S1. The ansatz (4.8) follows directly from the transformation (4.5)

of τ . Then the metric of the three dimensional total space is

ds2
3 = dy2 + dxtH(τ(y))dx = (ηy)2 + ηtH(τ0)η, (4.9)
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where

ηy = dy, ηa(y) = (st(y))a bdxb, (4.10)

with a, b = 1, 2. The metric (4.9) is equivalent to (1.6).

The group structure of this space was studied in [4]. The globally well-defined 1-

forms (4.10) satisfy

dηa + (N t)abη
y ∧ ηb = 0, (4.11)

where N is the Lie algebra element s(y) = eNy. Then locally, the space with the metric (4.9)

has the structure of a group manifold with Maurer-Cartan 1-forms (4.10). The associated

Lie algebra is

[ta, ty] = N b
a tb, [ta, tb] = 0. (4.12)

It is well known that reductions with duality twists are classified according to the

conjugacy classes of the duality group. The symmetry group SL(2, IR) of our interest here

has three conjugacy classes: parabolic, elliptic and hyperpolic.

Parabolic conjugacy class: In this case the group element s(y) and the corresponding

matrix N are

s(y) =

(

1 my

0 1

)

, N =

(

0 m

0 0

)

. (4.13)

Then the Lie algebra (4.12) is the Heisenberg algebra heis3, also called the Bianchi II

in the Bianchi classification scheme, which is a non-semi-simple algebra of Type A. The

Maurer-Cartan 1-forms (4.10) are

η1 = dx1, η2 = dx2 + mydx1, η3 = dy. (4.14)

In summary, reducing on T 2 followed by a circle reduction with a duality twist in the

parabolic conjugacy class of SL(2, IR) is locally equivalent to reducing from D + 3 to D

dimensions on the group manifold of the Heisenberg algebra (also known as the nilmanifold)

with the Maurer-Cartan 1-forms (4.14). Now suppose that the D + 3 dimensional theory

that we start with has a duality symmetry G̃ which contains the Heisenberg group as a

subgroup. Then, as we saw in the previous section, it is possible to introduce a twisted

ansatz for the dimensional reduction of the D+3 fields on the nilmanifold through a group

element g̃(x1, x2, y) provided that it satisfies (3.6). For consistency, the mass matrices

Mn must be constant and form a representation of the Heisenberg algebra. If G̃ is the

Heisenberg group itself, then a convenient choice of g̃ is

g̃ =







1 −qy px2

0 1 rx1

0 0 1






. (4.15)

Then the mass matrices are

M1 =







0 0 0

0 0 r

0 0 0






, M2 =







0 0 p

0 0 0

0 0 0






, M3 =







0 −q 0

0 0 0

0 0 0






. (4.16)
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Here p, q, r have dimension of mass and satisfy qr
p = m. One can check that Mn form

a representation of the Heisenberg algebra and that g̃ in (4.15) satisfies (3.6) with Mn

in (4.16) and ηm in (4.14).

Elliptic conjugacy class: In this case, the group element s(y) and the corresponding

matrix N are

s(y) =

(

cos my sin my

− sin my cos my

)

, N =

(

0 m

−m 0

)

. (4.17)

The basis 1-forms (4.10) are

η1 = cos mydx1 − sinmydx2, η2 = sin mydx1 + cos mydx2, η3 = dy. (4.18)

The corresponding algebra (4.12) is that of iso(2) (Bianchi VII0), so we see that a T 2

reduction followed by a reduction on a circle with an SL(2, IR) twist in the elliptic conjugacy

class is locally equivalent to group manifold reduction on ISO(2). If we start with a D + 3

dimensional theory invariant under a symmetry group G̃ that contains ISO(2), then we can

introduce a duality twist for the reduction of the D + 3-dimensional fields through a group

element g̃ ∈ G̃ provided that g̃ satisfies (3.6) with constant Mn forming a representation

of iso(2). If G̃ is ISO(2) itself, a convenient choice of g̃ is

g̃ =







cos my sin my px1

− sinmy cos my px2

0 0 1






. (4.19)

Then the mass matrices are

M1 =







0 0 p

0 0 0

0 0 0






, M2 =







0 0 0

0 0 p

0 0 0






, M3 =







0 m 0

−m 0 0

0 0 0






. (4.20)

Hyperbolic conjugacy class: In this case, the group element s(y) and the correspond-

ing matrix N are

s(y) =

(

emy 0

0 e−my

)

, N =

(

m 0

0 −m

)

. (4.21)

The basis 1-forms (4.10) are

η1 = emydx1 η2 = e−mydx2, η3 = dy. (4.22)

The corresponding algebra (4.12) is that of iso(1, 1) (Bianchi VI0), so we see that a T 2

reduction followed by a reduction on a circle with an SL(2, IR) twist in the hyperbolic

conjugacy class is locally equivalent to group manifold reduction on ISO(1, 1). If the D+3

dimensional theory we start with is invariant under a symmetry group G̃ that contains

ISO(1, 1), then we can introduce a duality twist for the reduction of the D+3-dimensional
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fields through a group element g̃ ∈ G̃ provided that g̃ satisfies (3.6) with constant Mn

forming a representation of iso(1, 1). If G̃ is ISO(1, 1) itself, a convenient choice of g̃ is

g̃ =







e−my 0 px1

0 emy qx2

0 0 1






. (4.23)

Then the mass matrices are

M1 =







0 0 p

0 0 0

0 0 0






, M2 =







0 0 0

0 0 q

0 0 0






, M3 =







−m 0 0

0 m 0

0 0 0






. (4.24)

Note that we can introduce three independent mass parameters in this case, whereas it

was only possible to introduce two independent mass parameters in the previous cases.

Before we close this section, we would like to make a remark on the global issues,

or more precisely on the condition of non-simply-connectedness, which comes about from

requiring that the connection A = g̃−1dg̃ is not pure gauge globally. The requirement

that the internal space has a non-trivial fundamental group is clearly a topological condi-

tion, so it cannot be explored by the local analysis we have pursued here. For example,

corresponding to the Bianchi IX algebra so(3), there are two groups: SO(3) and SU(2).

The latter is a simply-connected group with trivial fundamental group, whereas SO(3) has

π1(SO(3)) = Z2. A more detailed analysis than we have carried out here, including the

global issues was given in [4]. Note that all three group manifolds that we have studied in

this section are non-compact. Performing a dimensional reduction on a non-compact group

manifold G leads to a continuous spectrum in the lower dimensional theory. However, it is

possible to consistently truncate this spectrum to a finite number of fields, yielding gauged

supergravities if the higher dimensional theory that we start with is itself a supergrav-

ity theory. This can be extended to a compactification of string theory only if one can

construct a compact internal space X = G/Γ by compactifying G by dividing out by the

action of a discrete symmetry group Γ ⊂ G [4]. For all the Bianchi types except type IV

and VIa it is possible to construct compact manifolds in this way [6].4 Therefore, even if

the non-compact group manifold that we start with is simply-connected so that π1(G) is

trivial, the compact manifold X = G/Γ that we construct from G will have a non-trivial

fundamental group π1(X) ≈ Γ. This then makes it possible to introduce non-trivial duality

twists on X, as we discussed in section 3.

5. Example

In this section we will study the dimensional reduction of a particular eight dimensional

theory with a duality twist on a three dimensional unimodular, non-semi-simple group

manifold. As we saw in the previous section, there are three such group manifolds (other

4See [4] for the explicit forms of the discrete subgroups Γ which one can use to compactify the three

non-abelian, unimodular, non-semi-simple group manifolds we have considered here.
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than the abelian T 3) and locally each has the structure of a twisted torus. The eight dimen-

sional theory that we are interested in is the Type II supergravity, which has the duality

symmetry SL(2, IR) × SL(3, IR) [10]. This theory describes the low energy effective theory

of Type IIA/IIB string theory compactified on T 2, or equivalently M-theory compactified

on T 3 [11, 12]. It has a consistent truncation to the sector of SL(2, IR) singlets, which is

described by the Lagrangian5

L8 = R ∗ 1 +
1

4
Tr(dK ∧ ∗dK−1) +

1

2
Ht

(3)K−1 ∧ ∗H(3) +
1

6
εabcH(3)a ∧ H(3)b ∧ B(2)c (5.1)

where a, b, c = 1, 2, 3 and H(3) = dB(2) is the 3-vector

H(3) =







dB(2)1

dB(2)2

dB(2)3






.

From the M-theory point of view, the three 2-form fields B(2)a come from the reduction of

the eleven dimensional 3-form field. The IIB origin of B(2)a is the two (one in the NS-NS

sector and one in the R-R sector) 2-form fields that already exist in the massless spectrum

of the ten dimensional IIB string theory and the self-dual 4-form field C(4). The dimensional

reduction of C(4) yields in eight dimensions one 2-form field and one 4-form field, which

can be dualized to a second 2-form field. Imposing the self-duality constraint reduces the

number of 2-form fields to one. The scalar matrix K in (5.1) represents the coset space

SL(3, IR)/SO(3) parameterized by the scalar fields coming from the reduction of the eleven

dimensional metric. From the IIB point of view, two of the five scalars parameterizing K
are the axion and the dilaton that exist in ten dimensions; two come from the reduction of

the two ten dimensional 2-form fields and the fifth is the massless scalar associated with

the volume modulus of T 2 (the scalar coming from the reduction of the 2-form field in

the NS-NS sector combines with this fifth scalar to form the Kähler modulus of T 2). The

Lagrangian (5.1) is manifestly invariant under the duality group SL(3, IR) under which B(2)

and K transform as

B(2) → ΓB(2), K → ΓKΓt, Γ ∈ SL(3, IR). (5.2)

One can use this SL(3, IR) symmetry to introduce a twisted ansatz for the dimensional

reduction of the fields B(2) and K through

B(2)(x
µ, ym) = g̃(ym)B(2)(x

µ) (5.3)

K(xµ, ym) = g̃(ym)K(xµ)g̃t(ym). (5.4)

Here ym are the coordinates of the internal space and g̃(ym) ∈ G̃ = SL(3, IR). As we men-

tioned above, we would like to choose the internal space as a three dimensional unimodular,

non-semi-simple group manifold. We have seen in section 3 that this group manifold re-

duction with the twisted ansatz (5.3), (5.4) is consistent only if the sl(3, IR)-valued 1-form

5Here we are omitting the hats on the higher dimensional fields, hoping that the eight-dimensional fields

here will not be confused with the five-dimensional fields in (5.6), (5.9) and (5.10).
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A ≡ g̃−1dg̃ is a constant 1-form A = Mpη
p with the mass matrices Mp satisfying the

commutation relations (3.25). One can easily find such g̃ ∈ SL(3, IR). In fact, the group

elements we introduced in (4.15), (4.19) and (4.23) are all elements of the group SL(3, IR).

Therefore, it is possible to introduce non-trivial SL(3, IR) twists through these choices of g̃

for the dimensional reduction on the corresponding group manifolds. This gives a gauged

supergravity theory in five dimensions, with the mass matrices determining the gauge and

mass parameters and the scalar potential given by (4.16), (4.20) and (4.24) for the nil-

manifold, ISO(2) and ISO(1, 1) reductions respectively. Below we present the Lagrangian

describing the resulting five dimensional gauged supergravity theory, leaving the details of

the reduction to appendix A.

The five dimensional Lagrangian is

L5 = LEH + LS + LK + LCS. (5.5)

Here LEH comes from the reduction of the Einstein-Hilbert term in (5.1) and is exactly

of the form (2.5) as we are reducing on a group manifold. The eight dimensional metric

is invariant under the duality symmetry SL(3, IR), so there is no correction to (2.5) due

to the SL(3, IR) twist. The LS term in (5.5) comes from the reduction of the scalars

parameterizing K and is of the form

LS =
1

4
Tr(DK ∧ ∗DK−1) − e4αφV, (5.6)

where

DK = dK − MmKAm −KM t
mAm

DK−1 = dK−1 + M t
mK−1Am + K−1MmAm (5.7)

and

V =
1

2

∑

i

Tr(M2
i + KM t

iK−1Mi). (5.8)

Here Mi = L m
i Mm with L m

i L n
j δij = Mmn. The m,n are curved indices for the internal

space, whereas i, j are the flat indices of the tangent space of the internal space. (See

appendix A for details.) Mm are the mass matrices in (4.16), (4.20) or (4.24) depending

on which unimodular, non-semisimple group manifold we pick to reduce on and M is the

matrix in the coset space SL(3, IR)/SO(3) parameterized by the five scalars coming from

the reduction of the eight dimensional metric on the group manifold.

The dimensional reduction of the kinetic term for the fields B(2) in (5.1) yields in five

dimensions the following kinetic terms

LK =
1

2
(e−4αφH(3)aKab ∧ ∗H(3)b + H(2)amKabMmn ∧ ∗H(2)bn

+e2αφHm
(1)aKabMmn ∧ ∗Hn

(1)b + e8αφH(0)aKab ∧ ∗H(0)b). (5.9)

Here Hm
(1) = εmnpH(1)np, H(0) = εmnpH(0)mnp and H(3),H(2)m,H(1)np,H(0)mnp are as

in (3.16). Finally, the dimensional reduction of the topological term in (5.1) gives the

LCS term in (5.5)

LCS = εabcεmnp(H(2)am ∧ H(2)bn ∧ B(1)cp + H(3)a ∧ H(1)bmn ∧ B(1)cp). (5.10)
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Note that there are two potential terms in (5.5). The first is for the scalar fields coming from

the reduction of the eight dimensional metric, associated with the moduli parameterizing

the internal space and is of the form (2.8). The second term (5.8) is for these geometric

moduli and for the scalars that already exist in eight dimensions, parameterizing the matrix

K. As we mentioned above, from the point of view of M-theory, these are geometric moduli

associated with the internal T 3 on which M-theory has been compactified to obtain the

eight dimensional theory (5.1). On the other hand, from the point of view of IIB theory,

this is a potential term for the axion-dilaton field, the Kähler modulus of the internal T 2

(on which IIB has been compactified) and the scalar field coming from the reduction of

ten dimensional R-R 2-form field. The gauge algebra of our new five dimensional gauged

supergravity theory (5.5) is exactly the algebra that we presented in (3.27), (3.28), (3.29).

6. Outlook

In this paper we have studied the consistency conditions for the dimensional reduction of

a G̃-invariant theory with a duality twist in G̃ on a group manifold G. We have seen that

if the duality twist is introduced through a group element g̃ ∈ G̃, then the G̃-connection

A = g̃−1dg̃ on G must be constant. So, if ηm are basis 1-forms for the group manifold G

satisfying (1.4) then A can be written as A = Mnηn with constant Mn satisfying (3.25).

Mn are elements of the Lie algebra of G̃ and introduce the mass and gauge parameters in

the lower dimensional theory.

Duality symmetries arise naturally in string theory and in supergravity theories. For

example, eleven dimensional supergravity compactified on an n-torus T n yields in D = 11−
n dimensions a maximally supersymmetric supergravity theory with the global symmetry

group En,n [13, 14].6 The SL(n, IR) part of the symmetry group En is obvious and is

associated with the large diffeomorphism group of the internal torus T n. The symmetry

enhancement becomes more clear in string/M theory. The discrete subgroup En(Z) is

the U-duality symmetry of M-theory compactified on T n [10]. The SL(n,Z) part is the

geometric part of the T-duality group, whereas the enhancement is associated with the

part of the T-duality that mixes momentum and winding modes and the S-duality (which

we will refer to as the non-geometric symmetries from here on). As we have reviewed here

for n = 2 case, if the duality twist is in the geometric SL(n, IR), then the reduction can

be lifted to a string theory compactification on a twisted torus (can be viewed as having

arisen as the low energy effective theory limit of such a compactification). On the other

hand, when the symmetry is a non-geometric symmetry, then in most cases there is no

lifting to a conventional geometric string background [15 – 19]. However, the supergravity

analysis that we have used here is still valid [2, 20, 16] and one can try and learn from the

gauged supergravities arising from dimensional reductions of supergravity theories with

general duality twists. This is the approach that has been adopted in the recent paper

of Dabholkar and Hull [16]. If the duality twist is through an element of the group that

6Here En,n is the maximal noncompact form of the exceptional group En. For brevity we write them

simply as En. For n ≤ 5 we have E0 trivial, E1 = IR, E2 = GL(2, IR), E3 = SL(3, IR) × SL(2, IR), E4 =

SL(5, IR), E5 = O(5, 5).
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contains and is properly larger than the geometric SL(n, IR) subgroup then, from the point

of view of the higher dimensional supergravity theory, this amounts to twisting the internal

geometry and introducing non-trivial boundary conditions for some of the fields as in (1.2).

For this reason, it is important to study duality-twisted reductions on twisted geometries.

The analysis that we have presented here is a first step in understanding such dimensional

reductions.

As a particular example, we considered here the dimensional reduction of the eight

dimensional type II supergravity theory (truncated to the sector of SL(2, IR)-singlets) with

an SL(3, IR) twist on a three dimensional unimodular, non-semisimple group, which has

the local structure of a twisted torus. This eight dimensional theory can be obtained from

a T 3 compactification of the eleven dimensional supergravity and the SL(3, IR) symmetry

that we exploit is the geometric symmetry associated with the large diffeomorphisms of

T 3. So, the new five dimensional gauged supergravity that we found in section 5 can be

viewed as having been obtained from a compactification of M-theory on a non-trivial T 3

bundle over a three dimensional twisted torus (which itself is a non-trivial T 2 bundle over

S1). On the other hand, the same eight dimensional theory that we start with can also be

obtained as the low energy limit of Type II string theory compactified on a two dimensional

torus, T 2. There is an SL(2, IR) symmetry acting on the Kähler modulus of this two-torus

(which is the non-geometric part of the T-duality group). It combines with the S-duality

SL(2, IR) of Type IIB supergravity to form the SL(3, IR) symmetry group that we use to

introduce a duality-twisted reduction ansatz. So, from the point of view of ten dimensional

Type IIB supergravity, the geometry of the five dimensional internal space that leads to

the five dimensional gauged supergravity (5.5) is more complicated (and perhaps should

be analyzed in the context of Hull’s T-folds [15, 21]) as the Kähler modulus of T 2 varies

as it traverses over the three dimensional twisted torus. There are also twisted boundary

conditions for higher dimensional fields determined by their transformations under the

SL(2, IR) S-duality symmetry.

It would be interesting to study the duality-twisted reductions of other supergravity

theories on more general twisted geometries and see what this can teach us about string

compactifications with U-duality twists. An important step in this direction would be to

study the moduli space of flat connections on twisted tori.
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A. Dimensional reduction of L8

In this appendix we give the details of the dimensional reduction of the eight dimensional

theory (5.1) on a twisted torus with a duality twist in SL(3, IR).
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Let us start by rewriting (2.1), which is the metric ansatz for our dimensional reduction

dŝ2 = e2αφds2 + e2βφMmnhmhn (A.1)

with hm = ηm + Am = ηm + Am
µdxµ, where ηm are the basis one-forms on the three

dimensional group manifold which we presented in (4.14), (4.18), (4.22) for the cases of our

interest. Above we have split the eight dimensional curved index µ̂ as µ̂ : (µ,m), where µ

runs from 1 to 5 whereas the internal index m runs from 1 to 3. There is a corresponding

splitting of the flat indices â : (a, i). From (A.1) one can find the vielbeins, that is, the

basis 1-forms on the flat tangent space:

ê a
µ = eαφe a

µ , ê a
µ = 0,

êi = eβφei = eβφL i
mhm, (A.2)

where we have used that Mmn is a symmetric matrix so that it can be written as

Mmn = L i
mL j

n δij . (A.3)

From (A.2) it follows that

ê i
µ = eβφL i

mA m
µ , ê i

n = eβφe i
n = eβφL i

mUm
n. (A.4)

Then we can write

ê â
µ̂ =

(

e−αφe a
µ eβφL i

mA m
µ

0 eβφL i
n Un

m

)

. (A.5)

Note that α and β can be found from (2.2) by using D = 5, d = 3 to be

α =
1

2
√

3
, β = −α = − 1

2
√

3
. (A.6)

Performing the dimensional reduction on the flat tangent space is standard and is

discussed in detail in the literature. We refer the reader to [5, 6] for the reduction of

the Einstein-Hilbert term which yields in five dimensions the term (2.5) with α and β as

in (A.6). Here we will discuss the dimensional reduction of the kinetic terms for the p-form

fields and the scalars, for which one also has to consider the new features due to the non-

trivial SL(3, IR) twist. To analyze this we first need to see how the eight dimensional Hodge

operator is related to the five and three dimensional ones. One can show, by using (A.2)

and (A.4) that

∗̂(X(p)m1···mr

hm1∧· · ·∧hmr

r!
) = e−pαφe−rβφe(D−p)αφe(d−r)βφ ∗D (X(p)) ∗d (

hm1 ∧ · · · ∧ hmr

r!
)

= e(1−p+r)/
√

3φ ∗5 (X(p)) ∗3 (
hm1 ∧ · · · ∧ hmr

r!
). (A.7)

In the last line we have used that D = 5, d = 3 and α and β are as in (A.6). Then we have

∗̂8Ĥ(3) = ∗̂8[H(3) + H(2)n ∧ hn +
1

2!
εmnpH

m
(1) ∧ hn ∧ hp +

1

3!
εmnpH(0)h

m ∧ hn ∧ hp]

= e−4αφ ∗5 H(3) ∗3 1 + ∗5H(2)n ∗3 hn + e2αφεmnp ∗5 Hm
(1) ∗3 (

hn ∧ hp

2!
)

+e8αφ ∗5 H(0) ∗3 (εmnp
hm ∧ hn ∧ hp

3!
). (A.8)
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From (A.8) we can easily deduce that the dimensional reduction of Ĥt
(3)M̂−1∗̂8Ĥ(3) yields (5.9)

by noticing a few important points we list below.

hm ∧ ∗3h
n = Lm

iL
n
je

i ∧ ∗3e
j = Lm

iL
n
jδ

ij = Mmn ∗3 1. (A.9)

(
1

3!
εmnph

m ∧ hn ∧ hp) ∧ ∗3 (
1

3!
εqrsh

q ∧ hr ∧ hs) = ∗31.

εmpqεnrs(
hp ∧ hq

2!
) ∧ ∗3(

hr ∧ hs

2!
) = εi1i2i3εj1j2j3(

ei2 ∧ ei3

2!
) ∧ ∗3(

ej2 ∧ ej3

2!
)

= εi1i2i3εj1j2j3

(δi2j2δi3j3 − δi3j2δi2j3)

4
∗3 1

=
εi1j2j3εj1j2j3

2
∗3 1

=
(δj2j2δi1j1 − δj2i1δj1j2)

2
∗3 1 = δi1j1.

Now consider the dimensional reduction for the kinetic term (3.8) for the scalar fields.

Following (3.9) we find

dK̂ = g̃(MpKηp + dK + KM t
pη

p)g̃t

= g̃(MpKhp − MpKAp + dK + KM t
ph

p −KM t
pAp)g̃t

= g̃(MiKei − MpKAp + dK + KM t
i e

i −KM t
pAp)g̃t, (A.10)

where Mi = L m
i Mm. (Remember that ei = Li

mhm.) Similarly,

dK̂−1 = (g̃t)−1(−M t
pK−1ηp + dK−1 −K−1Mpη

p)g̃−1

= (g̃t)−1(−M t
pK−1hp + M t

pK−1Ap + dK−1 −K−1Mph
p + K−1MpAp)g̃−1

= (g̃t)−1(−M t
iK−1ei + M t

pK−1Ap + dK−1 −K−1Mie
i + K−1MpAp)g̃−1 (A.11)

From (A.10) and (A.11) we have

tr(dK̂∧∗̂dK̂−1) = tr[g̃(DK+(MiK+KM t
i )e

i)g̃t∧∗3(g̃
t)−1(DK−1−(M t

iK−1+K−1Mi)e
i)g̃−1],

(A.12)

where DK and DK−1 are as in (5.7). From (A.12) we find (5.6) by using (A.7) and

ei ∧ ∗3e
j = δij ∗3 1.

Let us now look at the dimensional reduction of the topological term

εabcĤ(3)a ∧ Ĥ(3)b ∧ B̂(2)c, (A.13)

where B̂(2) and Ĥ(3) are as in (3.14) and (3.15), respectively. Note that the y dependence

introduced through g̃(y) cancels out in five dimensions as we have

εabcS d
a S e

b S f
c = εdef ,

for all S ∈ SL(3). The term (A.13) does not involve the metric, so its dimensional reduction

is straightforward. The important point we should note is that the only non-zero terms

are the ones of the form

∼ εH(i) ∧ H(j) ∧ B(k) ∧ h ∧ h ∧ h,
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with i + j + k = 5 as the dimensions of the internal and the base space are three and five

respectively. From the product (A.13) one obtains nine such terms some of which cancel

each other. It is easy to check that the remaining terms give (5.10).
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